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Non-parametric tests 

Self-test answers 

 

• Carry out some analyses to test for normality and homogeneity of 
variance in these data. 

To get the outputs in the book execute the following commands: 

by(drugData[,c(2:3)], drugData$drug, stat.desc, basic=FALSE, norm=TRUE) 

leveneTest(drugData$sundayBDI, drugData$drug, center = "mean") 

leveneTest(drugData$wedsBDI, drugData$drug, center = "mean") 

 

• Compute the change in BDI scores from Sunday to Wednesday and then 
compute normality tests for this change score separately for the alcohol 
and ecstasy groups. 

To compute the change in BDI scores execute: 

drugData$BDIchange<-drugData$wedsBDI-drugData$sundayBDI 

This creates a variable called BDIchange in the drugData dataframe: 
  
     drug sundayBDI wedsBDI BDIchange 
1  Ecstasy        15      28        13 
2  Ecstasy        35      35         0 
3  Ecstasy        16      35        19 
4  Ecstasy        18      24         6 
5  Ecstasy        19      39        20 
6  Ecstasy        17      32        15 
7  Ecstasy        27      27         0 
8  Ecstasy        16      29        13 
9  Ecstasy        13      36        23 
10 Ecstasy        20      35        15 
11 Alcohol        16       5       -11 
12 Alcohol        15       6        -9 
13 Alcohol        20      30        10 
14 Alcohol        15       8        -7 
15 Alcohol        16       9        -7 
16 Alcohol        13       7        -6 
17 Alcohol        14       6        -8 
18 Alcohol        19      17        -2 
19 Alcohol        18       3       -15 
20 Alcohol        18      10        -8 
Output 0.1 

We can get some descriptive statistics (and normality tests) for the change score in each 
group by executing: 

by(drugData$BDIchange, drugData$drug, stat.desc, basic = FALSE, norm = TRUE) 

 

• Use the subset() function to create separate dataframes for the different 
drugs called alcoholData and ecstasyData. 

 

alcoholData<-subset(drugData, drug == "Alcohol") 

ecstasyData<-subset(drugData, drug == "Ecstacy") 
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• See whether you can enter the data in Table 15.3 into R (you don’t need 
to enter the ranks). Then conduct some exploratory analysis on the data. 

 
When the data are collected using different participants in each group, we need to input the 
data using a factor variable. So, the data editor will have two columns of data. The first 
column is a coding variable (called something like Soya) which, in this case, will have four 
levels. We can create this variable using the gl() function by executing: 

Soya<-gl(4, 20, labels = c("No Soya", "1 Soya Meal", "4 Soya Meals", "7 Soya Meals")) 

This command creates a variable called Soya, containing four blocks of 20 rows of data: the 
first block will be labelled No Soya, the second block 1 Soya Meal, and so on. The second 
column will have values for the dependent variable (Sperm). We can, therefore, create these 
variables by executing: 

Sperm<-c(0.35, 0.58, 0.88, 0.92, 1.22, 1.51, 1.52, 1.57, 2.43, 2.79, 3.40, 4.52, 4.72, 
6.90, 7.58, 7.78, 9.62, 10.05, 10.32, 21.08, 0.33, 0.36, 0.63, 0.64, 0.77, 1.53, 1.62, 
1.71, 1.94, 2.48, 2.71, 4.12, 5.65, 6.76, 7.08, 7.26, 7.92, 8.04, 12.10, 18.47, 0.40, 
0.60, 0.96, 1.20, 1.31, 1.35, 1.68, 1.83, 2.10, 2.93, 2.96, 3.00, 3.09, 3.36, 4.34, 
5.81, 5.94, 10.16, 10.98, 18.21, 0.31, 0.32, 0.56, 0.57, 0.71, 0.81, 0.87, 1.18, 1.25, 
1.33, 1.34, 1.49, 1.50, 2.09, 2.70, 2.75, 2.83, 3.07, 3.28, 4.11) 

Finally, we can tie these variables together in a dataframe called soyaData by executing: 

soyaData<-data.frame(Sperm, Soya) 

To get the outputs in the book execute: 

by(soyaData$Sperm, soyaData$Soya, stat.desc, basic=FALSE, norm=TRUE) 

leveneTest(soyaData$Sperm, soyaData$Soya) 

 

 

• Use ggplot2 to draw a boxplot of these data. 

 

ggplot(soyaData, aes(Soya, Sperm)) + geom_boxplot() + 

  labs(y = "Sperm Count", x = "Number of Soya Meals Per Week") 

 

• Using what you know about inputting data, try to enter these data into R 
and run some exploratory analyses. 

To enter the data execute: 
 

Start<-c(63.75, 62.98, 65.98, 107.27, 66.58, 120.46, 62.01, 71.87, 83.01, 76.62) 

Month1<-c(65.38, 66.24, 67.70, 102.72, 69.45, 119.96, 66.09, 73.62, 75.81, 67.66) 

Month2<-c( 81.34, 69.31, 77.89, 91.33, 72.87, 114.26, 68.01, 55.43, 71.63, 68.60) 

dietData<-data.frame(Start, Month1, Month2) 

To get exploratory analysis execute: 

stat.desc(dietData, basic = FALSE, norm = TRUE) 
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Oliver Twisted 

Please Sir, can I have some more … Jonck? 

Jonckheere’s test is based on the simple, but elegant, idea of taking a score in a 
particular condition and counting how many scores in subsequent conditions 
are smaller than that score. So, the first step is to order your groups in the way 
that you expect your medians to change. If we take the soya example from 
Chapter 15 in the book, then we expect sperm counts to be highest in the no 
soya meals condition, and then decrease in the following order: 1 meal per 
week, 4 meals per week, 7 meals per week. So, we start with the no meals per 

week condition, and we take the first score and ask ‘How many scores in the next condition 
are bigger than this score?’. 

You’ll find that this is easy to work out if you arrange your data in ascending order in each 
condition. Table 1 shows a convenient way to lay out the data. Note that the sperm counts 
have been put in ascending order and the groups have been ordered in the way that we 
expect our medians to decrease. So, starting with the first score in the no soya meals group 
(this score is 0.35), we look at the scores in the next condition (1 soya meal) and count how 
many are greater than 0.35. It turns out that all 19 of the 20 scores are greater than this 
value, so we place the value of 19 in the appropriate column and move onto the next score 
(0.58) and do the same. When we’ve done this for all of the scores in the no-meals group, we 
go back to the first score (0.35) again, but this time count how many scores are bigger in the 
next but one condition (the 4 soya meals condition). It turns out that 18 scores are bigger so 
we register this in the appropriate column and move onto the next score (0.58) and do the 
same until we’ve done all of the scores in the 7 soya meals group. We basically repeat this 
process until we’ve compared the first group with all subsequent groups. 

At this stage we move onto the next group (1 soya meal). Again, we start with the first score 
(0.33) and count how many scores are bigger than this value in the subsequent group (the 4 
soya meals group). In this case there all 20 scores are bigger than 0.33, so we register this in 
the table and move onto the next score (0.36). Again, we repeat this for all scores and then 
go back to the beginning of this group (i.e. back to the first score of 0.33) and repeat the 
process until this category has been compared with all subsequent categories. When all 
categories have been compared with all subsequent categories in this way, we simply add up 
the counts as I have done in the table. These sums of counts are denoted by Uij. 
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Table 1: Data to show Jonckheere’s test for the soya example 
No Soya Meals 1 Soya Meal 4 Soya Meals 7 Soya 

Meals 

Sperm How many scores are bigger in 
the… Sperm How many scores are bigger in 

the… Sperm How many scores are 
bigger in the… Sperm 

 1 
Meal 

4 
Meals 

7 
Meals  4 Meals 7 Meals  7 Meals  

0.35 19 20 18 0.33 20 18 0.40 18 0.31 

0.58 18 19 16 0.36 20 18 0.60 16 0.32 

0.88 18 18 13 0.63 18 16 0.96 13 0.56 

0.92 15 18 13 0.64 18 16 1.20 12 0.57 

1.22 15 15 12 0.77 18 15 1.31 11 0.71 

1.51 15 14 7 1.53 14 7 1.35 9 0.81 

1.52 15 14 7 1.62 14 7 1.68 7 0.87 

1.57 14 14 7 1.71 13 7 1.83 7 1.18 

2.43 10 11 6 1.94 12 7 2.10 6 1.25 

2.79 9 11 4 2.48 11 6 2.93 3 1.33 

3.40 9 6 1 2.71 11 5 2.96 3 1.34 

4.52 8 5 0 4.12 6 0 3.00 3 1.49 

4.72 8 5 0 5.65 4 0 3.09 2 1.50 

6.90 6 3 0 6.76 3 0 3.36 1 2.09 

7.58 4 3 0 7.08 3 0 4.34 0 2.70 

7.78 4 3 0 7.26 3 0 5.81 0 2.75 

9.62 2 3 0 7.92 3 0 5.94 0 2.83 

10.05 2 3 0 8.04 3 0 10.16 0 3.07 

10.32 2 2 0 12.10 1 0 10.98 0 3.28 

21.08 0 0 0 18.47 0 0 18.21 0 4.11 

Total 
(Uij) 

193 187 104  195 122  111  

 
 

The test statistic, J, is simply the sum of these counts: 

 
which for these data is simply: 

 
For small samples there are specific tables to look up critical values of J; however, when 
samples are large (anything bigger than about 8 per group would be large in this case) the 
sampling distribution of J becomes normal with a mean and standard deviation of: 
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in which N is simply the total sample size (in this case 80) and nk is simply the sample size of 
group k (in each case in this example this will be 20 because we have equal sample sizes). 
So, we just square each group’s sample size and add them up, then subtract this value from 
the total sample size squared. We then divide the result by 4. Therefore, we can calculate the 
mean for these data as: 

 
The standard deviation can similarly be calculated using the sample sizes of each group and 
the total sample size: 

𝜎𝑗=1728022×80+3−2022×20+3+2022×20+3+2022×20+3+2022×20+3 
=1726400163−40043+40043+40043+40043 

=1721043200−68800 
=1353333 
=116.33 

We can use the mean and standard deviation to convert J to a z-score (see Chapter 1) using 
the standard formulae: 

 
This z can then be evaluated using the critical values in the Appendix of the book. This test is 
always one-tailed because we have predicted a trend to use the test. So we’re looking at z 
being above 1.65 (when ignoring the sign) to be significant. In fact, the sign of the test tells us 
whether the medians ascend across the groups (a positive z) or descend across the groups 
(a negative z) as they do in this example! 

 
Does it matter how I order my groups? 
I have just showed how to use the test when the groups are ordered by descending medians 
(i.e. we expect sperm counts to be highest in the no soya meals condition, and then decrease 
in the order 1 meal per week, 4 meals per week, 7 meals per week; so we ordered the 
groups: no soya, 1 meal, 4 meals and 7 meals). Certain books will tell you to order the groups 
in ascending order (i.e. start with the group that you expect to have the lowest median). For 
the soya data this would mean arranging the groups in the opposite order to how I did above; 
that is, 7 meals, 4 meals, 1 meal and no meals. The purpose of this section is to show you 
what happens if we order the groups the opposite way around! 

The process is similar to that used in the previous section, only now we start with start with 
the 7 meals per week condition, and we take the first score and ask ‘How many scores in the 
next condition are bigger than this score?’ You’ll find that this is easy to work out if you 
arrange your data in ascending order in each condition. Table 2 shows a convenient way to 
lay out the data. Note that the sperm counts have been ordered in ascending order and the 
groups have been ordered in the way that we expect our medians to increase. So, starting 
with the first score in the 7 soya meals group (this score is 0.31), we look at the scores in the 
next condition (4 soya meals) and count how many are greater than 0.31. It turns out that all 
20 scores are greater than this value, so we place the value of 20 in the appropriate column 
and move on to the next score (0.32) and do the same. When we’ve done this for all of the 
scores in the 7 meals group, we go back to the first score (0.31) again, but this time count 
how many scores are bigger in the next but one condition (the 1 soya meal condition). It turns 
out that all 20 scores are bigger, so we register this in the appropriate column and move on to 
the next score (0.32) and do the same until we’ve done all of the scores in the 7 meals group. 
We basically repeat this process until we’ve compared the first group to all subsequent 
groups. 

 
Table 2: Data to show Jonckheere’s test for the soya example 
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7 Soya Meals 4 Soya Meals 1 Soya Meal 
No 

Soya 
Meals 

Sperm How many scores are bigger in 
the… Sperm How many scores are bigger 

in the… Sperm How many scores are 
bigger in the… Sperm 

 4 
Meals 

1 
Meal 

No 
Meals  1 Meal No Meals  No Meals  

0.31 20 20 20 0.40 18 19 0.33 20 0.35 

0.32 20 20 20 0.60 18 18 0.36 19 0.58 

0.56 19 18 19 0.96 15 16 0.63 18 0.88 

0.57 19 18 19 1.20 15 16 0.64 18 0.92 

0.71 18 16 18 1.31 15 15 0.77 18 1.22 

0.81 18 15 18 1.35 15 15 1.53 13 1.51 

0.87 18 15 18 1.68 13 12 1.62 12 1.52 

1.18 17 15 16 1.83 12 12 1.71 12 1.57 

1.25 16 15 15 2.10 11 12 1.94 12 2.43 

1.33 15 15 15 2.93 9 10 2.48 11 2.79 

1.34 15 15 15 2.96 9 10 2.71 11 3.40 

1.49 14 15 15 3.00 9 10 4.12 9 4.52 

1.50 14 15 15 3.09 9 10 5.65 7 4.72 

2.09 12 11 12 3.36 9 10 6.76 7 6.90 

2.70 11 10 11 4.34 8 9 7.08 6 7.58 

2.75 11 9 11 5.81 7 7 7.26 6 7.78 

2.83 11 9 10 5.94 7 7 7.92 4 9.62 

3.07 8 9 10 10.16 2 2 8.04 4 10.05 

3.28 7 9 10 10.98 2 1 12.10 1 10.32 

4.11 6 9 9 18.21 1 1 18.47 1 21.08 

Total 
(Uij) 

289 278 296  204 212  209  

 
At this stage we move on to the next group (the 4 soya meals). Again, we start with the first 

score (0.40) and count how many scores are bigger than this value in the subsequent group 
(the 1 meal group). In this case there are 18 scores bigger than 0.40, so we register this in 
the table and move on to the next score (0.60). Again, we repeat this for all scores and then 
go back to the beginning of this group (i.e. back to the first score of 0.40) and repeat the 
process until this category has been compared to all subsequent categories. When all 
categories have been compared to all subsequent categories in this way, we simply add up 
the counts as I have done in the table. These sums of counts are denoted by Uij.  

As before, the test statistic J is simply the sum of these counts: 

 

which for these data is simply: 

 

As I said earlier, for small samples there are specific tables to look up critical values of J; 
however, when samples are large (anything bigger than about 8 per group would be large in 
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this case) the sampling distribution of J becomes normal with a mean and standard deviation 
of: 

 

in which N is simply the total sample size (in this case 80) and nk is simply the sample size of 
group k (in each case in this example this will be 20 because we have equal sample sizes). 
So, we just square each group’s sample size and add them up, then subtract this value from 
the total sample size squared. We then divide the result by 4. Therefore, we can calculate the 
mean for these data as we did earlier: 

 

The standard deviation can similarly be calculated using the sample sizes of each group and 
the total sample size (again this is the same as earlier): 

𝜎𝑗=1728022×80+3−2022×20+3+2022×20+3+2022×20+3+2022×20+3 
=1726400163−40043+40043+40043+40043 

=1721043200−68800 
=1353333 
=116.33 

 
We can use the mean and standard deviation to convert J to a z-score (see Chapter 1) 

using the standard formulae. The mean and standard deviation are the same as before, but 
we now have a different test statistic (it is 1491 rather than 912). So, let’s see what happens 
when we plug this new test statistic into the equation: 

 
Note that the z-score is the same value as when we ordered the groups in descending order, 
except that it now has a positive value rather than a negative one! This goes to prove what I 
wrote earlier: the sign of the test tells us whether the medians ascend across the groups (a 
positive z) or descend across the groups (a negative z)! Earlier we ordered the groups in 
descending order and so got a negative z, and now we ordered them in ascending order and 
so got a positive z. 

Labcoat Leni’s real research 

Having a quail of a time? 

Problem 
Matthews, R. C. et al. (2007). Psychological Science, 18(9), 758–762. 

 
We encountered some research in Chapter 2 in which we discovered that you 
can influence aspects of male quail’s sperm production through ‘conditioning’. 
The basic idea is that the male is granted access to a female for copulation 

in a certain chamber (e.g. one that is coloured green) but gains no access 
to a female in a different context (e.g. a chamber with a tilted floor). The 
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male, therefore, learns that when he is in the green chamber his luck is in, but if the floor is 
tilted then frustration awaits. For other males the chambers will be reversed (i.e. they get sex 
only when in the chamber with the tilted floor). During the test phase, males get to mate in 
both chambers; the question is: after the males have learnt that they will get a mating 
opportunity in a certain context, do they produce more sperm or better-quality sperm when 
mating in that context compared to the control context?  

Mike Domjan and his colleagues predicted that if conditioning evolved because it increases 
reproductive fitness then males who mated in the context that had previously signalled a 
mating opportunity would fertilize a significantly greater number of eggs than quails that 
mated in their control context (Matthews, Domjan, Ramsey, & Crews, 2007). They put this 
hypothesis to the test in an experiment that is utter genius. After training, they allowed 14 
females to copulate with two males (counterbalanced): one male copulated with the female in 
the chamber that had previously signalled a reproductive opportunity (Signalled), whereas 
the second male copulated with the same female but in the chamber that had not previously 
signalled a mating opportunity (Control). Eggs were collected from the females for 10 days 
after the mating and a genetic analysis was used to determine the father of any fertilized 
eggs.  

The data from this study are in the file Matthews et al. (2007).dat. Labcoat Leni wants you 
to carry out a Wilcoxon signed-rank test to see whether more eggs were fertilized by males 
mating in their signalled context compared to males in their control context. 

Solution 
First of all, load in the Matthews et al. (2007).dat data: 
matthewsData<-read.delim("Matthews et al. (2007).dat", header = TRUE) 
 
We can have a look at the data by executing: 
 
matthewsData 
    Female_quail    Signalled Control 
1      Quail 01        1       0 
2      Quail 02        3       0 
3      Quail 03        1       0 
4      Quail 04        1       2 
5      Quail 05        2       2 
6      Quail 06        1       0 
7      Quail 07        2       0 
8      Quail 08        3       0 
9      Quail 09        3       0 
10     Quail 10        3       2 
11     Quail 11        4       0 
12     Quail 12        0       1 
13     Quail 13        1       2 
14     Quail 14        3       2 
 
Output 0.2 

You will see that we have the data for different groups stored in two columns.  
The wilcox.test() function takes the form: 

newModel<-wilcox.test(scores group 1, scores group 2, paired = FALSE/TRUE) 

Therefore, to compute a basic Wilcoxon test for the current data we could execute: 
 
matthewsModel<-wilcox.test(matthewsData$Signalled, matthewsData$Control,  paired = 
TRUE, correct= FALSE) 
 
Having left all of the default options as they are, R will calculate the p-value, using the exact 
approach if N is less than 40 and there are no ties, or the normal approximation approach if N 
is more than 40 or if there are any ties. It will also use a continuity correction. To use a normal 
approximation rather than exact p, and to get rid of the continuity correction, we can exclude 
exact = FALSE and correct = FALSE respectively: 

matthewsModel<-wilcox.test((matthewsData$Signalled, matthewsData$Control, exact = 
FALSE, correct= FALSE) 
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We can then view the output by executing the name of the model: 
 

matthewsModel 

 
Wilcoxon rank sum test 
 
data:  matthewsData$Signalled and matthewsData$Control  
W = 153.5, p-value = 0.00842 
alternative hypothesis: true location shift is not equal to 0  
 
We can see from the output above that there were a greater number of fertilized eggs from 
males mating in their signalled context than in the control context, W = 153.5, p < .05. In other 
words, conditioning (as a learning mechanism) provides some adaptive benefit in that it 
makes it more likely that you will pass on your genes. 

The authors concluded as follows: ‘The present findings show that when 2 males copulated 
with the same female in succession, the male that received a Pavlovian CS signalling 
copulatory opportunity fertilized more of the female’s eggs. Thus, Pavlovian conditioning 
increased reproductive fitness in the context of sperm competition’ (p. 760). 

 

Labcoat Leni’s real research 

Eggs-traordinary! 

Problem 
Çetinkaya, H., & Domjan, M. (2006). Journal of Comparative Psychology, 120(4), 427–432. 

 
We saw that male quail fertilized more eggs if they had been trained to be 
able to predict when a mating opportunity would arise. However, some quail 
develop fetishes. Really. In the previous example the type of compartment 

acted as a predictor of an opportunity to mate, but in studies where a 
terrycloth object acts as a sign that a mate will shortly become available, 
some quail start to direct their sexual behaviour towards the terrycloth 
object. In evolutionary terms, this fetishistic behaviour seems 
counterproductive because sexual behaviour becomes directed towards 

something that cannot provide reproductive success. However, perhaps this 
behaviour serves to prepare the organism for the ‘real’ mating behaviour. 

Hakan Çetinkaya and Mike Domjan conducted a brilliant study in which they sexually 
conditioned male quail (Çetinkaya & Domjan, 2006). All quail experienced the terrycloth 
stimulus and an opportunity to mate, but for some the terrycloth stimulus immediately 
preceded the mating opportunity (paired group) whereas for others they experienced it 2 
hours after the mating opportunity (this was the control group because the terrycloth stimulus 
did not predict a mating opportunity). In the paired group, quail were classified as fetishistic or 
not depending on whether they engaged in sexual behaviour with the terrycloth object. 

During a test trial the quail mated with a female and the researchers measured the 
percentage of eggs fertilized, the time spent near the terrycloth object, the latency to initiate 
copulation, and copulatory efficiency. If this fetishistic behaviour provides an evolutionary 
advantage then we would expect the fetishistic quail to fertilize more eggs, initiate copulation 
faster and be more efficient in their copulations.  

The data from this study are in the file Cetinkaya & Domjan (2006).dat. Labcoat Leni wants 
you to carry out a Kruskal–Wallis test to see whether fetishist quail produced a higher 
percentage of fertilized eggs and initiated sex more quickly. 

Solution 
 
First of all, load in the data: 
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quailData<-read.delim("Cetinkaya & Domjan (2006).dat", header = TRUE) 
 

The variable Groups, which contains text, will be imported as a factor and the order of the 
groups will be alphabetic: Control, Fetishistics, NonFetishistics. For reasons that will become 
apparent, it’s useful to have the control condition as the first level, which we have already got, 
then NonFetishistics followed by Fetishistics. Therefore, we need to reorder the factor levels. 
We can do this by executing: 

quailData$Groups<-factor(quailData$Groups, levels = levels(quailData$Groups)[c(1, 3, 
2)]) 

This command uses the factor() function to reorder the levels of the Groups variable. It re-
creates the variable Groups in the quailData dataframe (quailData$Soya) based on itself, but 
then uses the levels() function to reorder the groups.  

Let’s create a boxplot for each of the outcome variables by executing: 
ggplot(quailData, aes(Groups, Egg_Percent)) + geom_boxplot() + 
  labs(y = "Percentage of Eggs Fertilised", x = "Group") 

 
ggplot(quailData, aes(Groups, Latency)) + geom_boxplot() + 
  labs(y = "Time Taken to Initiate Copulation", x = "Group") 
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We can next do the Kruskal–Wallis test for the dependent variable Egg_Percent using the 

kruskal.test() function and by executing: 
 
kruskal.test(Egg_Percent ~ Groups, data = quailData) 

 
Note that we have executed the command directly, without creating a model, which is fine 
because we don’t really need to use the output of the function for any reason other than 
interpretation. 

To interpret the Kruskal–Wallis test, it is useful to obtain the mean rank for each group.  We 
can do this by adding a variable called Ranks to the dataframe with the rank() function: 
 
quailData$Ranks<-rank(quailData$Egg_Percent) 
 
This command creates a variable Ranks in quailData dataframe that is the ranks for the 
variable Egg_Percent. We can then obtain the mean rank for each group using the by() 
function in conjunction with the mean() function: 
 
by(quailData$Ranks, quailData$Groups, mean) 

 
We can then do exactly the same for the dependent variable Latency by executing: 

 
kruskal.test(Latency ~ Groups, data = quailData) 
quailData$Ranks<-rank(quailData$Latency) 
by(quailData$Ranks, quailData$Groups, mean) 
 
 
Kruskal-Wallis rank sum test 
 
data:  Egg_Percent by Groups  
Kruskal-Wallis chi-squared = 11.9552, df = 2, p-value = 0.002535 
 
> quailData$Ranks<-rank(quailData$Egg_Percent) 
> by(quailData$Ranks, quailData$Groups, mean) 
quailData$Groups: Control 
[1] 24.24074 
--------------------------------------------------------------------------------------  
quailData$Groups: NonFetishistics 
[1] 26.96667 
--------------------------------------------------------------------------------------  
quailData$Groups: Fetishistics 
[1] 41.82353 
Output 0.3 
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> kruskal.test(Latency ~ Groups, data = quailData) 
 
 Kruskal-Wallis rank sum test 
 
data:  Latency by Groups  
Kruskal-Wallis chi-squared = 32.2441, df = 2, p-value = 9.96e-08 
 
> quailData$Ranks<-rank(quailData$Latency) 
> by(quailData$Ranks, quailData$Groups, mean) 
quailData$Groups: Control 
[1] 39.59259 
--------------------------------------------------------------------------------------  
quailData$Groups: NonFetishistics 
[1] 8.8 
--------------------------------------------------------------------------------------  
quailData$Groups: Fetishistics 
[1] 33.47059 
Output 0.4 

Looking at the two output tables above, we can see that for both variables there is a 
significant effect. So there are differences between the groups, but we don’t know where 
these differences lie. We can investigate this by doing some post hoc tests using the 
kruskalmc()  function, executing: 

 
kruskalmc(Egg_Percent ~ Groups, data = quailData) 
kruskalmc(Latency ~ Groups, data = quailData) 
 

> kruskalmc(Egg_Percent ~ Groups, data = quailData) 
Multiple comparison test after Kruskal-Wallis  
p.value: 0.05  
Comparisons 
                               obs.dif critical.dif difference 
Control-NonFetishistics       2.725926     13.24124      FALSE 
Control-Fetishistics         17.582789     12.73068       TRUE 
NonFetishistics-Fetishistics 14.856863     14.56587       TRUE 
 
> kruskalmc(Latency ~ Groups, data = quailData) 
Multiple comparison test after Kruskal-Wallis  
p.value: 0.05  
Comparisons 
                               obs.dif critical.dif difference 
Control-NonFetishistics      30.792593     13.24124       TRUE 
Control-Fetishistics          6.122004     12.73068      FALSE 
NonFetishistics-Fetishistics 24.670588     14.56587       TRUE 
Output 0.5 

For the Kruskal–Wallis test, we need only report the test statistic (denoted by H), its degrees 
of freedom and its significance. So, we could report something like: ‘Kruskal–Wallis analysis 
of variance (ANOVA) confirmed that female quail partnered with the different types of male 
quail produced different percentages of fertilized eggs, H(2) =11.96, p < .05. Subsequent 
pairwise comparisons of the mean ranks between groups indicated that fetishistic male quail 
yielded higher rates of fertilization than both the nonfetishistic male quail (difference = 14.86) 
and the control male quail (difference = 17.59). However, the nonfetishistic group was not 
significantly different from the control group (difference = 2.73)’ (p. 429). For the latency data: 
‘A Kruskal–Wallis analysis indicated significant group differences, H(2) = 32.24, p < .05. 
Pairwise comparisons of the mean ranks between groups indicated that that the nonfetishistic 
males had significantly shorter copulatory latencies than both the fetishistic male quail 
(difference = 24.67) and the control male quail (difference = 30.79). However, the fetishistic 
group was not significantly different from the control group (difference = 6.12)’ (p. 430). 

These results support the authors’ theory that fetishist behaviour may have evolved because 
it offers some adaptive function (such as preparing for the real thing). 
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Smart Alex’s solutions 

Task 1 

• A psychologist was interested in the cross-species differences between men and 
dogs. She observed a group of dogs and a group of men in a naturalistic setting (20 
of each). She classified several behaviours as being dog-like (urinating against trees 
and lamp posts, attempts to copulate with anything that moved, and attempts to lick 
their own genitals). For each man and dog she counted the number of dog-like 
behaviours displayed in a 24-hour period. It was hypothesized that dogs would 
display more dog-like behaviours than men. The data are in the file 
MenLikeDogs.dat. Analyse them with a Wilcoxon rank-sum test. 

First of all, load in the data: 
MenDogs<-read.delim("MenLikeDogs.dat", header = TRUE) 

 
We can then view the data by executing the name of the dataframe: 

 
MenDogs 
 

    species  behaviou 
1      Dog       21 
2      Dog       21 
3      Dog       42 
4      Dog       18 
5      Dog       15 
6      Dog       24 
7      Dog       36 
8      Dog       36 
9      Dog       18 
10     Dog       24 
11     Dog       30 
12     Dog       39 
13     Dog       21 
14     Dog       15 
15     Dog       51 
16     Dog       24 
17     Dog       48 
18     Dog       18 
19     Dog       36 
20     Dog       24 
21     Man       30 
22     Man       27 
23     Man       30 
24     Man       33 
25     Man       24 
26     Man       15 
27     Man       12 
28     Man       30 
29     Man       21 
30     Man       54 
31     Man       30 
32     Man       18 
33     Man       39 
34     Man       30 
35     Man       27 
36     Man       24 
37     Man       39 
38     Man       18 
39     Man       15 
40     Man       21 
Output 0.6 

As you can see, the variable species which contains text, has been be imported as a factor. 
The order of the groups will be alphabetic, for these data this is fine because it makes sense 
to have Dog as the baseline category. 

We can have a look at some descriptive statistics by executing: 
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by(MenDogs[,2], MenDogs$species, stat.desc, basic=FALSE, norm=TRUE) 
 

MenDogs$species: Dog 
median  mean    SE.mean CI.mean.0.95  var     std.dev  coef.var skewness  skew.2SE  
24.00   28.05   2.46    5.14          120.58  10.98    0.39     0.63      0.61 
--------------------------------------------------------------------------------------  
MenDogs$species: Man 
median   mean   SE.mean CI.mean.0.95  var     std.dev  coef.var  skewness skew.2SE  
27.00    26.85   2.21    4.63         98.03    9.90    0.37      0.80     0.78  
Output 0.7 

I have edited the output above to make it clearer and take up less space. 
 

Now we want to run the Wilcoxon test using the wilcox.test() function. Because we have the 
data for different groups stored in a single column, the wilcox.test() function is used like the 
lm() function (in other words, like a regression): 
 
MenDogsModel<-wilcox.test(behaviour ~ species, data = MenDogs) 
MenDogsModel 
 
 Wilcoxon rank sum test with continuity correction 
 
data:  behaviou by species  
W = 205.5, p-value = 0.8918 
alternative hypothesis: true location shift is not equal to 0  
Output 0.8 

We can also calculate the effect size (make sure that you have executed the function from 
the book chapter first) by executing: 

 
rFromWilcox(MenDogsModel, 40) 
 

behaviou by species Effect Size, r =  -0.02151555 
Output 0.9 

This represents a tiny effect (it is close to zero), which tells us that there truly isn’t much 
difference between dogs and men. 
 
Writing and interpreting the result 
We could report something like: 

 Men (Mdn = 27) and dogs (Mdn = 24) did not significantly differ in the extent to which 
they displayed dog-like behaviours, W = 205.5, ns, r = −.02. 

Task 2 

 There’s been much speculation over the years about the influence of subliminal 
messages on records. To name a few cases, both Ozzy Osbourne and Judas Priest 
have been accused of putting backward masked messages on their albums that 
subliminally influence poor unsuspecting teenagers into doing things like blowing their 
heads off with shotguns. A psychologist was interested in whether backward masked 
messages really did have an effect. He took the master tapes of Britney Spears’ 
‘Baby One More Time’ and created a second version that had the masked message 
‘deliver your soul to the dark lord’ repeated in the chorus. He took this version, and 
the original, and played one version (randomly) to a group of 32 people. He took the 
same group six months later and played them whatever version they hadn’t heard the 
time before. So each person heard both the original, and the version with the masked 
message, but at different points in time. The psychologist measured the number of 
goats that were sacrificed in the week after listening to each version. It was 
hypothesized that the backward message would lead to more goats being sacrificed. 
The data are in the file DarkLord.dat. Analyse them with a Wilcoxon signed-rank 
test. 

First of all, as always, we need to load the data: 
darkLord<-read.delim("DarkLord.dat", header = TRUE) 
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We can have a look at the data, by executing: 
darkLord 

 
   message   nomessag 
1       11        9 
2        8        8 
3        7        6 
4        4        5 
5       10       19 
6       11       20 
7       16       11 
8       10        8 
9        8       21 
10       2        4 
11      11       11 
12       9       14 
13      11       10 
14      11       12 
15      17       17 
16       9        8 
17      14       11 
18       6       12 
19       9       10 
20       7        9 
21       6       12 
22      11        9 
23      15       12 
24       8       11 
25      11       21 
26       5       17 
27       8        9 
28      11       10 
29       6       12 
30      11       11 
31       8        7 
32       2       12 
Output 0.10 

We can see that our data are stored in different columns (message and nomessag).  
We can then have a look at some descriptive statistics using the stat.desc() function and 

executing: 
stat.desc(darkLord, basic=FALSE, norm=TRUE) 
 

 message     nomessag 
median        9.00000000 11.00000000 
mean          9.15625000 11.50000000 
SE.mean       0.62718871  0.77511706 
CI.mean.0.95  1.27915980  1.58086166 
var          12.58770161 19.22580645 
std.dev       3.54791511  4.38472422 
coef.var      0.38748561  0.38128037 
skewness      0.07694431  0.72064177 
skew.2SE      0.09282537  0.86937990 
kurtosis     -0.15977594 -0.17286102 
kurt.2SE     -0.09870373 -0.10678722 
normtest.W    0.96119718  0.91376919 
normtest.p    0.29609977  0.01413934 
Output 0.11 

  
Next, we can run the Wilcoxon signed-rank test. We can again use the wilcox.test() function, 

but this time because our data are stored in different columns (message and nomessag) we 
need to enter the names of the two variables we want to compare rather than a formula, and 
we need to include the option paired=TRUE to tell R that the data are paired.  (If we don’t 
include this option R will do a Wilcoxon rank-sum test.)  For these examples, we’re also going 
to include the option correct = FALSE, because we do not want a continuity correction. 
Therefore, to run the analysis execute: 
 

darkModel<-wilcox.test(darkLord$message, darkLord$nomessag,  paired = TRUE, 
correct= FALSE) 
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We can see the output by executing the model name: 
darkModel 
 

Wilcoxon signed rank test 
 
data:  darkLord$message and darkLord$nomessag  
V = 111.5, p-value = 0.03627 
alternative hypothesis: true location shift is not equal to 0 
Output 0.12 

Finally, we can calculate the effect size. If you have executed the function from the book 
chapter, you can get the effect sizes by inputting the model name and the number of 
observations into the function: 

 
rFromWilcox(darkModel, 64) 

 
darkLord$message and darkLord$nomessag Effect Size, r =  -0.2617321 
Output 0.13 

This represents a medium effect (it is close to Cohen’s benchmark of .3), which tells us that 
the effect of whether or a subliminal message was present was a substantive effect. 

 
Writing and interpreting the result 

 The number of goats sacrificed after hearing the message (Mdn  = 9) was 
significantly less than after hearing the normal version of the song (Mdn = 11), p < 
.05, r = −.26. 

Task 3 

 A psychologist was interested in the effects of television programmes on domestic 
life. She hypothesized that through ‘learning by watching’, certain programmes might 
actually encourage people to behave like the characters within them. This in turn 
could affect the viewer’s own relationships (depending on whether the programme 
depicted harmonious or dysfunctional relationships). She took episodes of three 
popular TV shows and showed them to 54 couples, after which the couple were left 
alone in the room for an hour. The experimenter measured the number of times the 
couple argued. Each couple viewed all three of the TV programmes at different points 
in time (a week apart) and the order in which the programmes were viewed was 
counterbalanced over couples. The TV programmes selected were EastEnders 
(which typically portrays the lives of extremely miserable, argumentative, London folk 
who like nothing more than to beat each other up, lie to each other, sleep with each 
other’s wives and generally show no evidence of any consideration to their fellow 
humans!), Friends (which portrays a group of unrealistically considerate and nice 
people who love each other oh so very much – but for some reason I love it anyway!), 
and a National Geographic programme about whales (this was supposed to act as a 
control). The data are in the file Eastenders.dat. Access the file and conduct 
Friedman’s ANOVA on the data. 

Load in the data: 
eastendersData<-read.delim("Eastenders.dat", header = TRUE) 
 
stat.desc(eastendersData, basic = FALSE, norm = TRUE) 

 
                eastend     friends      whales 
median       8.0000000000  6.00000000  7.00000000 
mean         8.0370370370  5.64814815  6.01851852 
SE.mean      0.3506637043  0.42226421  0.51224744 
CI.mean.0.95 0.7033423206  0.84695475  1.02743826 
var          6.6401118099  9.62858141 14.16946191 
std.dev      2.5768414406  3.10299555  3.76423457 
coef.var     0.3206208244  0.54938282  0.62544205 
skewness     0.7780513090 -0.26031167 -0.13704621 
skew.2SE     1.1986385649 -0.40102702 -0.21112858 
kurtosis     0.0452954476 -1.14673646 -0.98347696 
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kurt.2SE     0.0354483792 -0.89744005 -0.76967259 
normtest.W   0.9139935672  0.94256841  0.94299775 
normtest.p   0.0008919632  0.01194442  0.01245366 
Output 0.14 

To run the Friedman test we simply input the name of our dataframe, but within the 
as.matrix() function, which converts it to a matrix. In this example, we would execute: 
 
friedman.test(as.matrix(eastendersData)) 

 
Friedman rank sum test 
 
data:  as.matrix(eastendersData)  
Friedman chi-squared = 7.5859, df = 2, p-value = 0.02253 
Output 0.15 

The output shows the chi-square test statistic and its associated degrees of freedom (in this 
case we had three groups so the degrees of freedom are 3 – 1 = 2), and the significance. 
Therefore, we could conclude that the type of programme watched significantly affected the 
subsequent number of arguments (because the significance value is less than .05). However, 
this result doesn’t tell us exactly where the differences lie.  

As with the Kruskal–Wallis test, there is a function that enables us to compare all groups, or 
to compare groups to a baseline. This function, friedmanmc(), requires the data to be in 
exactly the same format as the friedman.test() function and we use it in exactly the same way. 
Therefore, for the current data we would execute: 
 
friedmanmc(as.matrix(eastendersData)) 
 

The results are pasted below. As with the Kruskal–Wallis test, you need to look at the column 
labelled differences: if this says TRUE then the groups differ significantly, but if it says FALSE 
they don’t.  
 

Multiple comparisons between groups after Friedman test  
p.value: 0.05  
Comparisons 
    obs.dif critical.dif difference 
1-2    26.0     24.87897       TRUE 
1-3    20.5     24.87897      FALSE 
2-3     5.5     24.87897      FALSE 
Output 0.16 

Writing and interpreting the result 
For Friedman’s ANOVA we need only report the test statistic (which we saw earlier is denoted 
by χ2), its degrees of freedom and its significance. So, we could report something like: 

 The number of arguments that couples had was significantly affected by the 
programme they had just watched, χ2(2)  = 7.59, p < .05. 

We need to report the follow-up tests as well: 
 The number of arguments that couples had was significantly affected by the 

programme they had just watched, χ2(2) = 7.59, p < .05. Post hoc tests were used 
with Bonferroni correction applied. It appeared that watching EastEnders significantly 
affected the number of arguments compared to Friends (difference = 26.0). However, 
the number of arguments was not significantly different after watching EastEnders 
compared to the programme about whales (difference = 20.5), or after watching 
Friends compared to the programme about whales (difference = 5.5). In all cases, the 
critical difference (α = .05 corrected for the number of tests) was 24.88. We can 
conclude that EastEnders produced significantly more arguments compared to 
Friends. However, Friends didn’t produce any substantial reduction in the number of 
arguments relative to the whale programme. 
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Task 4 

 A researcher was interested in trying to prevent coulrophobia (fear of clowns) in 
children. She decided to do an experiment in which different groups of children (15 in 
each) were exposed to different forms of positive information about clowns. The first 
group watched some adverts for McDonald’s in which their mascot Ronald McDonald 
is seen cavorting about with children going on about how they should love their 
mums. A second group was told a story about a clown who helped some children 
when they got lost in a forest (although what on earth a clown was doing in a forest 
remains a mystery). A third group was entertained by a real clown, who came into the 
classroom and made balloon animals for the children. A final group acted as a control 
condition and they had nothing done to them at all. The researcher took self-report 
ratings of how much the children liked clowns, resulting in a score for each child that 
could range from 0 (not scared of clowns at all) to 5 (very scared of clowns). The data 
are in the file coulrophobia.dat. Access them and conduct a Kruskal–Wallis test. 

Load in the data: 
clownData<-read.delim("coulrophobia.dat", header = TRUE) 

 
The variable infotype, which contains text, will be imported as a factor. This is fine except 
that when we import the data the order of the groups will be alphabetic: Advert, Exposure, 
None, Story. For reasons that will become apparent, it’s useful to have None as our control 
category. Therefore, we need to reorder the factor levels. We can do this by executing: 
 
clownData$infotype<-factor(clownData$infotype, levels = 
levels(clownData$infotype)[c(3, 1, 2, 4)]) 
 
This command uses the factor() function to reorder the levels of the infotype variable. It re-
creates the variable infotype in the clownData dataframe (clownData$infotype) based on 
itself, but then uses the levels() function to reorder the groups. We simply put the order of the 
levels that we’d like in the c() function, so in this case we have asked for the levels to be 
ordered 3, 1, 2, 4, which means that the current third group (None) will become the first 
group, the current first group will become the second group and so on. Having executed this 
command, our groups will be ordered None, Advert, Exposure, Story. 

We can look at some descriptive statistics by executing: 
by(clownData$beliefs, clownData$infotype, stat.desc, basic=FALSE) 
 
clownData$infotype: None 
      median         mean      SE.mean  CI.mean.0.95       var      std.dev     coef.var  
   2.0000000    2.3333333    0.1259882    0.2702177    0.2380952    0.4879500    0.2091214  
--------------------------------------------------------------------------------------  
clownData$infotype: Advert 
      median         mean      SE.mean  CI.mean.0.95    var         std.dev     coef.var  
   4.0000000    3.6000000    0.3055050    0.6552432    1.4000000    1.1832160    0.3286711  
--------------------------------------------------------------------------------------------------  
clownData$infotype: Exposure 
    median      mean       SE.mean      CI.mean.0.95    var         std.dev     coef.var  
   1.0000000    1.8666667    0.4349786    0.9329362    2.8380952    1.6846647    0.9024990  
--------------------------------------------------------------------------------------------------  
clownData$infotype: Story 
      median         mean      SE.mean   CI.mean.0.95  var         std.dev     coef.var  
   1.0000000    1.6666667    0.3607752    0.7737858    1.9523810    1.3972763    0.8383658  
Output 0.17 

 
The Kruskal–Wallis test is done using the kruskal.test() function. For the current data we 

would execute: 
kruskal.test(beliefs ~ infotype, data = clownData) 
 
To interpret the Kruskal–Wallis test, it is useful to obtain the mean rank for each group.  We 
can do this by adding a variable called Ranks to the dataframe with the rank() function: 
 
clownData$Ranks<-rank(clownData$beliefs) 
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This command creates a variable Ranks in the clownData dataframe that is the ranks for the 
variable beliefs. We can then obtain the mean rank for each group using the by() function in 
conjunction with the mean() function: 

 
by(clownData$Ranks, clownData$infotype, mean) 

 
Let’s have a look at the output from the Kruskal–Wallis test: 
 

Kruskal-Wallis rank sum test 
 
data:  beliefs by infotype  
Kruskal-Wallis chi-squared = 17.0581, df = 3, p-value = 0.0006876 
Output 0.18 

This shows this test statistic (R labels it chi-squared rather than H) and its associated degrees 
of freedom (in this case we had four groups so the degrees of freedom are 3), and the 
significance (which is less than the critical value of .05). Therefore, we could conclude that 
the type of information presented to the children about clowns significantly affected their fear 
ratings of clowns.  
 
 
clownData$infotype: None 
[1] 31.33333 
--------------------------------------------------------------------------------------  
clownData$infotype: Advert 
[1] 45.03333 
--------------------------------------------------------------------------------------  
clownData$infotype: Exposure 
[1] 23.76667 
--------------------------------------------------------------------------------------  
clownData$infotype: Story 
[1] 21.86667 
Output 0.19 

Output 0.19 tells us the mean rank in each condition. These mean ranks are important later 
for interpreting any effects. 

 
A nice succinct set of comparisons would be to compare each group against the control: 

• Test 1: Advert compared to control 
• Test 2: Exposure compared to control 
• Test 3: Story compared to control 

Fortunately, we can implement this analysis using the kruskalmc() function by using the cont 
option. This option takes the form of cont = ‘one-tailed’ or ‘two-tailed’ and, if included, will 
compare all levels against the first. Therefore, the only complication is that we need to make 
sure that the None group is the first level of the infotype factor. Fortunately we thought ahead 
and made the None group the first level when we loaded the data into R. Therefore, to 
compare each group to the None group (using a two-tailed test) we simply execute: 
 
kruskalmc(beliefs ~ infotype, data = clownData, cont = 'two-tailed') 

 
Multiple comparison test after Kruskal-Wallis, treatments vs control (two-tailed)  
p.value: 0.05  
Comparisons 
                obs.dif critical.dif difference 
None-Advert   13.700000     15.26651      FALSE 
None-Exposure  7.566667     15.26651      FALSE 
None-Story     9.466667     15.26651      FALSE 
Output 0.20 

Looking at the output above, the significant effect of type of information on fear ratings of 
clowns does not seem to reflect the difference between the control and experimental groups.  

If we look at the means in the output from the descriptives above, we can see the 
highest mean fear belief was for the Advert condition, therefore it is possible that the 
significant effect of type of information on fear ratings of clowns is due to the differences 
between the Advert group and the other groups. To compare all levels against the Advert 
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level, we first need to re-order the data so that Advert is now the first level. To do this we can 
type: 

 

clownData$infotype<-factor(clownData$infotype, levels = 
levels(clownData$infotype)[c(2, 1, 3, 4)]) 

 
To compare each group against Advert, we then type: 

kruskalmc(beliefs ~ infotype, data = clownData, cont = 'two-tailed') 

 
Multiple comparison test after Kruskal-Wallis, treatments vs control (two-tailed)  
p.value: 0.05  
Comparisons 
                 obs.dif critical.dif difference 
Advert-None     13.70000     15.26651      FALSE 
Advert-Exposure 21.26667     15.26651       TRUE 
Advert-Story    23.16667     15.26651       TRUE 
Output 0.21 

Looking at Output Output 0.21 we can see that hearing a positive story and having exposure 
to a clown significantly decreased fear beliefs compared to watching the advert (I know the 
direction of the effects by looking at Output 0.19), but there was no significant difference in 
fear levels between watching the advert and the control condition.  
 
Writing and interpreting the result 
For the Kruskal–Wallis test, we need only report the test statistic (denoted by H), its degrees 
of freedom and its significance. So, we could report something like: 

 Children’s fear beliefs about clowns were significantly affected the format of 
information given to them, H(3) = 17.06, p < .01). 

However, we need to report the follow-up tests as well (including their effect sizes):  
 Children’s fear beliefs about clowns were significantly affected by the format of 

information given to them, H(3) = 17.06, p < .01. Focused comparisons of the mean 
ranks between groups showed that fear belief counts were significantly lower after 
exposure (difference = 21.3) and stories (difference = 23.17), but not the control 
(difference = 13.7) compared to watching adverts featuring Ronald McDonald. A 
second set of comparisons revealed that compared to the control condition, fear 
belief scores were not significantly different after adverts (difference = 13.7), stories 
(difference = 9.47) or exposure (difference = 7.57). In all cases, the critical difference 
(α = .05 corrected for the number of tests) was 15.27.   
 

 
 


