
DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 1

Non-parametric tests

Self-test answers

• Carry out some analyses to test for normality and homogeneity of
variance in these data.

To get the outputs in the book execute the following commands:

by(drugData[,c(2:3)], drugData$drug, stat.desc, basic=FALSE, norm=TRUE)

leveneTest(drugData$sundayBDI, drugData$drug, center = "mean")

leveneTest(drugData$wedsBDI, drugData$drug, center = "mean")

• Compute the change in BDI scores from Sunday to Wednesday and then
compute normality tests for this change score separately for the alcohol
and ecstasy groups.

To compute the change in BDI scores execute:

drugData$BDIchange<-drugData$wedsBDI-drugData$sundayBDI

This creates a variable called BDIchange in the drugData dataframe:

 drug sundayBDI wedsBDI BDIchange
1 Ecstasy 15 28 13
2 Ecstasy 35 35 0
3 Ecstasy 16 35 19
4 Ecstasy 18 24 6
5 Ecstasy 19 39 20
6 Ecstasy 17 32 15
7 Ecstasy 27 27 0
8 Ecstasy 16 29 13
9 Ecstasy 13 36 23
10 Ecstasy 20 35 15
11 Alcohol 16 5 -11
12 Alcohol 15 6 -9
13 Alcohol 20 30 10
14 Alcohol 15 8 -7
15 Alcohol 16 9 -7
16 Alcohol 13 7 -6
17 Alcohol 14 6 -8
18 Alcohol 19 17 -2
19 Alcohol 18 3 -15
20 Alcohol 18 10 -8
Output 0.1

We can get some descriptive statistics (and normality tests) for the change score in each
group by executing:

by(drugData$BDIchange, drugData$drug, stat.desc, basic = FALSE, norm = TRUE)

• Use the subset() function to create separate dataframes for the different
drugs called alcoholData and ecstasyData.

alcoholData<-subset(drugData, drug == "Alcohol")

ecstasyData<-subset(drugData, drug == "Ecstacy")

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 2

• See whether you can enter the data in Table 15.3 into R (you don’t need
to enter the ranks). Then conduct some exploratory analysis on the data.

When the data are collected using different participants in each group, we need to input the
data using a factor variable. So, the data editor will have two columns of data. The first
column is a coding variable (called something like Soya) which, in this case, will have four
levels. We can create this variable using the gl() function by executing:

Soya<-gl(4, 20, labels = c("No Soya", "1 Soya Meal", "4 Soya Meals", "7 Soya Meals"))

This command creates a variable called Soya, containing four blocks of 20 rows of data: the
first block will be labelled No Soya, the second block 1 Soya Meal, and so on. The second
column will have values for the dependent variable (Sperm). We can, therefore, create these
variables by executing:

Sperm<-c(0.35, 0.58, 0.88, 0.92, 1.22, 1.51, 1.52, 1.57, 2.43, 2.79, 3.40, 4.52, 4.72,
6.90, 7.58, 7.78, 9.62, 10.05, 10.32, 21.08, 0.33, 0.36, 0.63, 0.64, 0.77, 1.53, 1.62,
1.71, 1.94, 2.48, 2.71, 4.12, 5.65, 6.76, 7.08, 7.26, 7.92, 8.04, 12.10, 18.47, 0.40,
0.60, 0.96, 1.20, 1.31, 1.35, 1.68, 1.83, 2.10, 2.93, 2.96, 3.00, 3.09, 3.36, 4.34,
5.81, 5.94, 10.16, 10.98, 18.21, 0.31, 0.32, 0.56, 0.57, 0.71, 0.81, 0.87, 1.18, 1.25,
1.33, 1.34, 1.49, 1.50, 2.09, 2.70, 2.75, 2.83, 3.07, 3.28, 4.11)

Finally, we can tie these variables together in a dataframe called soyaData by executing:

soyaData<-data.frame(Sperm, Soya)

To get the outputs in the book execute:

by(soyaData$Sperm, soyaData$Soya, stat.desc, basic=FALSE, norm=TRUE)

leveneTest(soyaData$Sperm, soyaData$Soya)

• Use ggplot2 to draw a boxplot of these data.

ggplot(soyaData, aes(Soya, Sperm)) + geom_boxplot() +

 labs(y = "Sperm Count", x = "Number of Soya Meals Per Week")

• Using what you know about inputting data, try to enter these data into R
and run some exploratory analyses.

To enter the data execute:

Start<-c(63.75, 62.98, 65.98, 107.27, 66.58, 120.46, 62.01, 71.87, 83.01, 76.62)

Month1<-c(65.38, 66.24, 67.70, 102.72, 69.45, 119.96, 66.09, 73.62, 75.81, 67.66)

Month2<-c(81.34, 69.31, 77.89, 91.33, 72.87, 114.26, 68.01, 55.43, 71.63, 68.60)

dietData<-data.frame(Start, Month1, Month2)

To get exploratory analysis execute:

stat.desc(dietData, basic = FALSE, norm = TRUE)

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 3

Oliver Twisted

Please Sir, can I have some more … Jonck?

Jonckheere’s test is based on the simple, but elegant, idea of taking a score in a
particular condition and counting how many scores in subsequent conditions
are smaller than that score. So, the first step is to order your groups in the way
that you expect your medians to change. If we take the soya example from
Chapter 15 in the book, then we expect sperm counts to be highest in the no
soya meals condition, and then decrease in the following order: 1 meal per
week, 4 meals per week, 7 meals per week. So, we start with the no meals per

week condition, and we take the first score and ask ‘How many scores in the next condition
are bigger than this score?’.

You’ll find that this is easy to work out if you arrange your data in ascending order in each
condition. Table 1 shows a convenient way to lay out the data. Note that the sperm counts
have been put in ascending order and the groups have been ordered in the way that we
expect our medians to decrease. So, starting with the first score in the no soya meals group
(this score is 0.35), we look at the scores in the next condition (1 soya meal) and count how
many are greater than 0.35. It turns out that all 19 of the 20 scores are greater than this
value, so we place the value of 19 in the appropriate column and move onto the next score
(0.58) and do the same. When we’ve done this for all of the scores in the no-meals group, we
go back to the first score (0.35) again, but this time count how many scores are bigger in the
next but one condition (the 4 soya meals condition). It turns out that 18 scores are bigger so
we register this in the appropriate column and move onto the next score (0.58) and do the
same until we’ve done all of the scores in the 7 soya meals group. We basically repeat this
process until we’ve compared the first group with all subsequent groups.

At this stage we move onto the next group (1 soya meal). Again, we start with the first score
(0.33) and count how many scores are bigger than this value in the subsequent group (the 4
soya meals group). In this case there all 20 scores are bigger than 0.33, so we register this in
the table and move onto the next score (0.36). Again, we repeat this for all scores and then
go back to the beginning of this group (i.e. back to the first score of 0.33) and repeat the
process until this category has been compared with all subsequent categories. When all
categories have been compared with all subsequent categories in this way, we simply add up
the counts as I have done in the table. These sums of counts are denoted by Uij.

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 4

Table 1: Data to show Jonckheere’s test for the soya example
No Soya Meals 1 Soya Meal 4 Soya Meals 7 Soya

Meals

Sperm How many scores are bigger in
the… Sperm How many scores are bigger in

the… Sperm How many scores are
bigger in the… Sperm

 1
Meal

4
Meals

7
Meals 4 Meals 7 Meals 7 Meals

0.35 19 20 18 0.33 20 18 0.40 18 0.31

0.58 18 19 16 0.36 20 18 0.60 16 0.32

0.88 18 18 13 0.63 18 16 0.96 13 0.56

0.92 15 18 13 0.64 18 16 1.20 12 0.57

1.22 15 15 12 0.77 18 15 1.31 11 0.71

1.51 15 14 7 1.53 14 7 1.35 9 0.81

1.52 15 14 7 1.62 14 7 1.68 7 0.87

1.57 14 14 7 1.71 13 7 1.83 7 1.18

2.43 10 11 6 1.94 12 7 2.10 6 1.25

2.79 9 11 4 2.48 11 6 2.93 3 1.33

3.40 9 6 1 2.71 11 5 2.96 3 1.34

4.52 8 5 0 4.12 6 0 3.00 3 1.49

4.72 8 5 0 5.65 4 0 3.09 2 1.50

6.90 6 3 0 6.76 3 0 3.36 1 2.09

7.58 4 3 0 7.08 3 0 4.34 0 2.70

7.78 4 3 0 7.26 3 0 5.81 0 2.75

9.62 2 3 0 7.92 3 0 5.94 0 2.83

10.05 2 3 0 8.04 3 0 10.16 0 3.07

10.32 2 2 0 12.10 1 0 10.98 0 3.28

21.08 0 0 0 18.47 0 0 18.21 0 4.11

Total
(Uij)

193 187 104 195 122 111

The test statistic, J, is simply the sum of these counts:

which for these data is simply:

For small samples there are specific tables to look up critical values of J; however, when
samples are large (anything bigger than about 8 per group would be large in this case) the
sampling distribution of J becomes normal with a mean and standard deviation of:

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 5

in which N is simply the total sample size (in this case 80) and nk is simply the sample size of
group k (in each case in this example this will be 20 because we have equal sample sizes).
So, we just square each group’s sample size and add them up, then subtract this value from
the total sample size squared. We then divide the result by 4. Therefore, we can calculate the
mean for these data as:

The standard deviation can similarly be calculated using the sample sizes of each group and
the total sample size:

𝜎𝑗=1728022×80+3−2022×20+3+2022×20+3+2022×20+3+2022×20+3
=1726400163−40043+40043+40043+40043

=1721043200−68800
=1353333
=116.33

We can use the mean and standard deviation to convert J to a z-score (see Chapter 1) using
the standard formulae:

This z can then be evaluated using the critical values in the Appendix of the book. This test is
always one-tailed because we have predicted a trend to use the test. So we’re looking at z
being above 1.65 (when ignoring the sign) to be significant. In fact, the sign of the test tells us
whether the medians ascend across the groups (a positive z) or descend across the groups
(a negative z) as they do in this example!

Does it matter how I order my groups?
I have just showed how to use the test when the groups are ordered by descending medians
(i.e. we expect sperm counts to be highest in the no soya meals condition, and then decrease
in the order 1 meal per week, 4 meals per week, 7 meals per week; so we ordered the
groups: no soya, 1 meal, 4 meals and 7 meals). Certain books will tell you to order the groups
in ascending order (i.e. start with the group that you expect to have the lowest median). For
the soya data this would mean arranging the groups in the opposite order to how I did above;
that is, 7 meals, 4 meals, 1 meal and no meals. The purpose of this section is to show you
what happens if we order the groups the opposite way around!

The process is similar to that used in the previous section, only now we start with start with
the 7 meals per week condition, and we take the first score and ask ‘How many scores in the
next condition are bigger than this score?’ You’ll find that this is easy to work out if you
arrange your data in ascending order in each condition. Table 2 shows a convenient way to
lay out the data. Note that the sperm counts have been ordered in ascending order and the
groups have been ordered in the way that we expect our medians to increase. So, starting
with the first score in the 7 soya meals group (this score is 0.31), we look at the scores in the
next condition (4 soya meals) and count how many are greater than 0.31. It turns out that all
20 scores are greater than this value, so we place the value of 20 in the appropriate column
and move on to the next score (0.32) and do the same. When we’ve done this for all of the
scores in the 7 meals group, we go back to the first score (0.31) again, but this time count
how many scores are bigger in the next but one condition (the 1 soya meal condition). It turns
out that all 20 scores are bigger, so we register this in the appropriate column and move on to
the next score (0.32) and do the same until we’ve done all of the scores in the 7 meals group.
We basically repeat this process until we’ve compared the first group to all subsequent
groups.

Table 2: Data to show Jonckheere’s test for the soya example

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 6

7 Soya Meals 4 Soya Meals 1 Soya Meal
No

Soya
Meals

Sperm How many scores are bigger in
the… Sperm How many scores are bigger

in the… Sperm How many scores are
bigger in the… Sperm

 4
Meals

1
Meal

No
Meals 1 Meal No Meals No Meals

0.31 20 20 20 0.40 18 19 0.33 20 0.35

0.32 20 20 20 0.60 18 18 0.36 19 0.58

0.56 19 18 19 0.96 15 16 0.63 18 0.88

0.57 19 18 19 1.20 15 16 0.64 18 0.92

0.71 18 16 18 1.31 15 15 0.77 18 1.22

0.81 18 15 18 1.35 15 15 1.53 13 1.51

0.87 18 15 18 1.68 13 12 1.62 12 1.52

1.18 17 15 16 1.83 12 12 1.71 12 1.57

1.25 16 15 15 2.10 11 12 1.94 12 2.43

1.33 15 15 15 2.93 9 10 2.48 11 2.79

1.34 15 15 15 2.96 9 10 2.71 11 3.40

1.49 14 15 15 3.00 9 10 4.12 9 4.52

1.50 14 15 15 3.09 9 10 5.65 7 4.72

2.09 12 11 12 3.36 9 10 6.76 7 6.90

2.70 11 10 11 4.34 8 9 7.08 6 7.58

2.75 11 9 11 5.81 7 7 7.26 6 7.78

2.83 11 9 10 5.94 7 7 7.92 4 9.62

3.07 8 9 10 10.16 2 2 8.04 4 10.05

3.28 7 9 10 10.98 2 1 12.10 1 10.32

4.11 6 9 9 18.21 1 1 18.47 1 21.08

Total
(Uij)

289 278 296 204 212 209

At this stage we move on to the next group (the 4 soya meals). Again, we start with the first

score (0.40) and count how many scores are bigger than this value in the subsequent group
(the 1 meal group). In this case there are 18 scores bigger than 0.40, so we register this in
the table and move on to the next score (0.60). Again, we repeat this for all scores and then
go back to the beginning of this group (i.e. back to the first score of 0.40) and repeat the
process until this category has been compared to all subsequent categories. When all
categories have been compared to all subsequent categories in this way, we simply add up
the counts as I have done in the table. These sums of counts are denoted by Uij.

As before, the test statistic J is simply the sum of these counts:

which for these data is simply:

As I said earlier, for small samples there are specific tables to look up critical values of J;
however, when samples are large (anything bigger than about 8 per group would be large in

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 7

this case) the sampling distribution of J becomes normal with a mean and standard deviation
of:

in which N is simply the total sample size (in this case 80) and nk is simply the sample size of
group k (in each case in this example this will be 20 because we have equal sample sizes).
So, we just square each group’s sample size and add them up, then subtract this value from
the total sample size squared. We then divide the result by 4. Therefore, we can calculate the
mean for these data as we did earlier:

The standard deviation can similarly be calculated using the sample sizes of each group and
the total sample size (again this is the same as earlier):

𝜎𝑗=1728022×80+3−2022×20+3+2022×20+3+2022×20+3+2022×20+3
=1726400163−40043+40043+40043+40043

=1721043200−68800
=1353333
=116.33

We can use the mean and standard deviation to convert J to a z-score (see Chapter 1)

using the standard formulae. The mean and standard deviation are the same as before, but
we now have a different test statistic (it is 1491 rather than 912). So, let’s see what happens
when we plug this new test statistic into the equation:

Note that the z-score is the same value as when we ordered the groups in descending order,
except that it now has a positive value rather than a negative one! This goes to prove what I
wrote earlier: the sign of the test tells us whether the medians ascend across the groups (a
positive z) or descend across the groups (a negative z)! Earlier we ordered the groups in
descending order and so got a negative z, and now we ordered them in ascending order and
so got a positive z.

Labcoat Leni’s real research

Having a quail of a time?

Problem
Matthews, R. C. et al. (2007). Psychological Science, 18(9), 758–762.

We encountered some research in Chapter 2 in which we discovered that you
can influence aspects of male quail’s sperm production through ‘conditioning’.
The basic idea is that the male is granted access to a female for copulation

in a certain chamber (e.g. one that is coloured green) but gains no access
to a female in a different context (e.g. a chamber with a tilted floor). The

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 8

male, therefore, learns that when he is in the green chamber his luck is in, but if the floor is
tilted then frustration awaits. For other males the chambers will be reversed (i.e. they get sex
only when in the chamber with the tilted floor). During the test phase, males get to mate in
both chambers; the question is: after the males have learnt that they will get a mating
opportunity in a certain context, do they produce more sperm or better-quality sperm when
mating in that context compared to the control context?

Mike Domjan and his colleagues predicted that if conditioning evolved because it increases
reproductive fitness then males who mated in the context that had previously signalled a
mating opportunity would fertilize a significantly greater number of eggs than quails that
mated in their control context (Matthews, Domjan, Ramsey, & Crews, 2007). They put this
hypothesis to the test in an experiment that is utter genius. After training, they allowed 14
females to copulate with two males (counterbalanced): one male copulated with the female in
the chamber that had previously signalled a reproductive opportunity (Signalled), whereas
the second male copulated with the same female but in the chamber that had not previously
signalled a mating opportunity (Control). Eggs were collected from the females for 10 days
after the mating and a genetic analysis was used to determine the father of any fertilized
eggs.

The data from this study are in the file Matthews et al. (2007).dat. Labcoat Leni wants you
to carry out a Wilcoxon signed-rank test to see whether more eggs were fertilized by males
mating in their signalled context compared to males in their control context.

Solution
First of all, load in the Matthews et al. (2007).dat data:
matthewsData<-read.delim("Matthews et al. (2007).dat", header = TRUE)

We can have a look at the data by executing:

matthewsData
 Female_quail Signalled Control
1 Quail 01 1 0
2 Quail 02 3 0
3 Quail 03 1 0
4 Quail 04 1 2
5 Quail 05 2 2
6 Quail 06 1 0
7 Quail 07 2 0
8 Quail 08 3 0
9 Quail 09 3 0
10 Quail 10 3 2
11 Quail 11 4 0
12 Quail 12 0 1
13 Quail 13 1 2
14 Quail 14 3 2

Output 0.2

You will see that we have the data for different groups stored in two columns.
The wilcox.test() function takes the form:

newModel<-wilcox.test(scores group 1, scores group 2, paired = FALSE/TRUE)

Therefore, to compute a basic Wilcoxon test for the current data we could execute:

matthewsModel<-wilcox.test(matthewsData$Signalled, matthewsData$Control, paired =
TRUE, correct= FALSE)

Having left all of the default options as they are, R will calculate the p-value, using the exact
approach if N is less than 40 and there are no ties, or the normal approximation approach if N
is more than 40 or if there are any ties. It will also use a continuity correction. To use a normal
approximation rather than exact p, and to get rid of the continuity correction, we can exclude
exact = FALSE and correct = FALSE respectively:

matthewsModel<-wilcox.test((matthewsData$Signalled, matthewsData$Control, exact =
FALSE, correct= FALSE)

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 9

We can then view the output by executing the name of the model:

matthewsModel

Wilcoxon rank sum test

data: matthewsData$Signalled and matthewsData$Control
W = 153.5, p-value = 0.00842
alternative hypothesis: true location shift is not equal to 0

We can see from the output above that there were a greater number of fertilized eggs from
males mating in their signalled context than in the control context, W = 153.5, p < .05. In other
words, conditioning (as a learning mechanism) provides some adaptive benefit in that it
makes it more likely that you will pass on your genes.

The authors concluded as follows: ‘The present findings show that when 2 males copulated
with the same female in succession, the male that received a Pavlovian CS signalling
copulatory opportunity fertilized more of the female’s eggs. Thus, Pavlovian conditioning
increased reproductive fitness in the context of sperm competition’ (p. 760).

Labcoat Leni’s real research

Eggs-traordinary!

Problem
Çetinkaya, H., & Domjan, M. (2006). Journal of Comparative Psychology, 120(4), 427–432.

We saw that male quail fertilized more eggs if they had been trained to be
able to predict when a mating opportunity would arise. However, some quail
develop fetishes. Really. In the previous example the type of compartment

acted as a predictor of an opportunity to mate, but in studies where a
terrycloth object acts as a sign that a mate will shortly become available,
some quail start to direct their sexual behaviour towards the terrycloth
object. In evolutionary terms, this fetishistic behaviour seems
counterproductive because sexual behaviour becomes directed towards

something that cannot provide reproductive success. However, perhaps this
behaviour serves to prepare the organism for the ‘real’ mating behaviour.

Hakan Çetinkaya and Mike Domjan conducted a brilliant study in which they sexually
conditioned male quail (Çetinkaya & Domjan, 2006). All quail experienced the terrycloth
stimulus and an opportunity to mate, but for some the terrycloth stimulus immediately
preceded the mating opportunity (paired group) whereas for others they experienced it 2
hours after the mating opportunity (this was the control group because the terrycloth stimulus
did not predict a mating opportunity). In the paired group, quail were classified as fetishistic or
not depending on whether they engaged in sexual behaviour with the terrycloth object.

During a test trial the quail mated with a female and the researchers measured the
percentage of eggs fertilized, the time spent near the terrycloth object, the latency to initiate
copulation, and copulatory efficiency. If this fetishistic behaviour provides an evolutionary
advantage then we would expect the fetishistic quail to fertilize more eggs, initiate copulation
faster and be more efficient in their copulations.

The data from this study are in the file Cetinkaya & Domjan (2006).dat. Labcoat Leni wants
you to carry out a Kruskal–Wallis test to see whether fetishist quail produced a higher
percentage of fertilized eggs and initiated sex more quickly.

Solution

First of all, load in the data:

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 10

quailData<-read.delim("Cetinkaya & Domjan (2006).dat", header = TRUE)

The variable Groups, which contains text, will be imported as a factor and the order of the
groups will be alphabetic: Control, Fetishistics, NonFetishistics. For reasons that will become
apparent, it’s useful to have the control condition as the first level, which we have already got,
then NonFetishistics followed by Fetishistics. Therefore, we need to reorder the factor levels.
We can do this by executing:

quailData$Groups<-factor(quailData$Groups, levels = levels(quailData$Groups)[c(1, 3,
2)])

This command uses the factor() function to reorder the levels of the Groups variable. It re-
creates the variable Groups in the quailData dataframe (quailData$Soya) based on itself, but
then uses the levels() function to reorder the groups.

Let’s create a boxplot for each of the outcome variables by executing:
ggplot(quailData, aes(Groups, Egg_Percent)) + geom_boxplot() +
 labs(y = "Percentage of Eggs Fertilised", x = "Group")

ggplot(quailData, aes(Groups, Latency)) + geom_boxplot() +
 labs(y = "Time Taken to Initiate Copulation", x = "Group")

Group

P
er

ce
nt

ag
e

of
 E

gg
s

Fe
rti

lis
ed

0

20

40

60

80

100

Control NonFetishistics Fetishistics

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 11

We can next do the Kruskal–Wallis test for the dependent variable Egg_Percent using the

kruskal.test() function and by executing:

kruskal.test(Egg_Percent ~ Groups, data = quailData)

Note that we have executed the command directly, without creating a model, which is fine
because we don’t really need to use the output of the function for any reason other than
interpretation.

To interpret the Kruskal–Wallis test, it is useful to obtain the mean rank for each group. We
can do this by adding a variable called Ranks to the dataframe with the rank() function:

quailData$Ranks<-rank(quailData$Egg_Percent)

This command creates a variable Ranks in quailData dataframe that is the ranks for the
variable Egg_Percent. We can then obtain the mean rank for each group using the by()
function in conjunction with the mean() function:

by(quailData$Ranks, quailData$Groups, mean)

We can then do exactly the same for the dependent variable Latency by executing:

kruskal.test(Latency ~ Groups, data = quailData)
quailData$Ranks<-rank(quailData$Latency)
by(quailData$Ranks, quailData$Groups, mean)

Kruskal-Wallis rank sum test

data: Egg_Percent by Groups
Kruskal-Wallis chi-squared = 11.9552, df = 2, p-value = 0.002535

> quailData$Ranks<-rank(quailData$Egg_Percent)
> by(quailData$Ranks, quailData$Groups, mean)
quailData$Groups: Control
[1] 24.24074
--
quailData$Groups: NonFetishistics
[1] 26.96667
--
quailData$Groups: Fetishistics
[1] 41.82353
Output 0.3

Group

Ti
m

e
Ta

ke
n

to
 In

iti
at

e
C

op
ul

at
io

n

10

20

30

40

50

Control NonFetishistics Fetishistics

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 12

> kruskal.test(Latency ~ Groups, data = quailData)

 Kruskal-Wallis rank sum test

data: Latency by Groups
Kruskal-Wallis chi-squared = 32.2441, df = 2, p-value = 9.96e-08

> quailData$Ranks<-rank(quailData$Latency)
> by(quailData$Ranks, quailData$Groups, mean)
quailData$Groups: Control
[1] 39.59259
--
quailData$Groups: NonFetishistics
[1] 8.8
--
quailData$Groups: Fetishistics
[1] 33.47059
Output 0.4

Looking at the two output tables above, we can see that for both variables there is a
significant effect. So there are differences between the groups, but we don’t know where
these differences lie. We can investigate this by doing some post hoc tests using the
kruskalmc() function, executing:

kruskalmc(Egg_Percent ~ Groups, data = quailData)
kruskalmc(Latency ~ Groups, data = quailData)

> kruskalmc(Egg_Percent ~ Groups, data = quailData)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05
Comparisons
 obs.dif critical.dif difference
Control-NonFetishistics 2.725926 13.24124 FALSE
Control-Fetishistics 17.582789 12.73068 TRUE
NonFetishistics-Fetishistics 14.856863 14.56587 TRUE

> kruskalmc(Latency ~ Groups, data = quailData)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05
Comparisons
 obs.dif critical.dif difference
Control-NonFetishistics 30.792593 13.24124 TRUE
Control-Fetishistics 6.122004 12.73068 FALSE
NonFetishistics-Fetishistics 24.670588 14.56587 TRUE
Output 0.5

For the Kruskal–Wallis test, we need only report the test statistic (denoted by H), its degrees
of freedom and its significance. So, we could report something like: ‘Kruskal–Wallis analysis
of variance (ANOVA) confirmed that female quail partnered with the different types of male
quail produced different percentages of fertilized eggs, H(2) =11.96, p < .05. Subsequent
pairwise comparisons of the mean ranks between groups indicated that fetishistic male quail
yielded higher rates of fertilization than both the nonfetishistic male quail (difference = 14.86)
and the control male quail (difference = 17.59). However, the nonfetishistic group was not
significantly different from the control group (difference = 2.73)’ (p. 429). For the latency data:
‘A Kruskal–Wallis analysis indicated significant group differences, H(2) = 32.24, p < .05.
Pairwise comparisons of the mean ranks between groups indicated that that the nonfetishistic
males had significantly shorter copulatory latencies than both the fetishistic male quail
(difference = 24.67) and the control male quail (difference = 30.79). However, the fetishistic
group was not significantly different from the control group (difference = 6.12)’ (p. 430).

These results support the authors’ theory that fetishist behaviour may have evolved because
it offers some adaptive function (such as preparing for the real thing).

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 13

Smart Alex’s solutions

Task 1

• A psychologist was interested in the cross-species differences between men and
dogs. She observed a group of dogs and a group of men in a naturalistic setting (20
of each). She classified several behaviours as being dog-like (urinating against trees
and lamp posts, attempts to copulate with anything that moved, and attempts to lick
their own genitals). For each man and dog she counted the number of dog-like
behaviours displayed in a 24-hour period. It was hypothesized that dogs would
display more dog-like behaviours than men. The data are in the file
MenLikeDogs.dat. Analyse them with a Wilcoxon rank-sum test.

First of all, load in the data:
MenDogs<-read.delim("MenLikeDogs.dat", header = TRUE)

We can then view the data by executing the name of the dataframe:

MenDogs

 species behaviou
1 Dog 21
2 Dog 21
3 Dog 42
4 Dog 18
5 Dog 15
6 Dog 24
7 Dog 36
8 Dog 36
9 Dog 18
10 Dog 24
11 Dog 30
12 Dog 39
13 Dog 21
14 Dog 15
15 Dog 51
16 Dog 24
17 Dog 48
18 Dog 18
19 Dog 36
20 Dog 24
21 Man 30
22 Man 27
23 Man 30
24 Man 33
25 Man 24
26 Man 15
27 Man 12
28 Man 30
29 Man 21
30 Man 54
31 Man 30
32 Man 18
33 Man 39
34 Man 30
35 Man 27
36 Man 24
37 Man 39
38 Man 18
39 Man 15
40 Man 21
Output 0.6

As you can see, the variable species which contains text, has been be imported as a factor.
The order of the groups will be alphabetic, for these data this is fine because it makes sense
to have Dog as the baseline category.

We can have a look at some descriptive statistics by executing:

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 14

by(MenDogs[,2], MenDogs$species, stat.desc, basic=FALSE, norm=TRUE)

MenDogs$species: Dog
median mean SE.mean CI.mean.0.95 var std.dev coef.var skewness skew.2SE
24.00 28.05 2.46 5.14 120.58 10.98 0.39 0.63 0.61
--
MenDogs$species: Man
median mean SE.mean CI.mean.0.95 var std.dev coef.var skewness skew.2SE
27.00 26.85 2.21 4.63 98.03 9.90 0.37 0.80 0.78
Output 0.7

I have edited the output above to make it clearer and take up less space.

Now we want to run the Wilcoxon test using the wilcox.test() function. Because we have the
data for different groups stored in a single column, the wilcox.test() function is used like the
lm() function (in other words, like a regression):

MenDogsModel<-wilcox.test(behaviour ~ species, data = MenDogs)
MenDogsModel

 Wilcoxon rank sum test with continuity correction

data: behaviou by species
W = 205.5, p-value = 0.8918
alternative hypothesis: true location shift is not equal to 0
Output 0.8

We can also calculate the effect size (make sure that you have executed the function from
the book chapter first) by executing:

rFromWilcox(MenDogsModel, 40)

behaviou by species Effect Size, r = -0.02151555
Output 0.9

This represents a tiny effect (it is close to zero), which tells us that there truly isn’t much
difference between dogs and men.

Writing and interpreting the result
We could report something like:

 Men (Mdn = 27) and dogs (Mdn = 24) did not significantly differ in the extent to which
they displayed dog-like behaviours, W = 205.5, ns, r = −.02.

Task 2

 There’s been much speculation over the years about the influence of subliminal
messages on records. To name a few cases, both Ozzy Osbourne and Judas Priest
have been accused of putting backward masked messages on their albums that
subliminally influence poor unsuspecting teenagers into doing things like blowing their
heads off with shotguns. A psychologist was interested in whether backward masked
messages really did have an effect. He took the master tapes of Britney Spears’
‘Baby One More Time’ and created a second version that had the masked message
‘deliver your soul to the dark lord’ repeated in the chorus. He took this version, and
the original, and played one version (randomly) to a group of 32 people. He took the
same group six months later and played them whatever version they hadn’t heard the
time before. So each person heard both the original, and the version with the masked
message, but at different points in time. The psychologist measured the number of
goats that were sacrificed in the week after listening to each version. It was
hypothesized that the backward message would lead to more goats being sacrificed.
The data are in the file DarkLord.dat. Analyse them with a Wilcoxon signed-rank
test.

First of all, as always, we need to load the data:
darkLord<-read.delim("DarkLord.dat", header = TRUE)

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 15

We can have a look at the data, by executing:
darkLord

 message nomessag
1 11 9
2 8 8
3 7 6
4 4 5
5 10 19
6 11 20
7 16 11
8 10 8
9 8 21
10 2 4
11 11 11
12 9 14
13 11 10
14 11 12
15 17 17
16 9 8
17 14 11
18 6 12
19 9 10
20 7 9
21 6 12
22 11 9
23 15 12
24 8 11
25 11 21
26 5 17
27 8 9
28 11 10
29 6 12
30 11 11
31 8 7
32 2 12
Output 0.10

We can see that our data are stored in different columns (message and nomessag).
We can then have a look at some descriptive statistics using the stat.desc() function and

executing:
stat.desc(darkLord, basic=FALSE, norm=TRUE)

 message nomessag
median 9.00000000 11.00000000
mean 9.15625000 11.50000000
SE.mean 0.62718871 0.77511706
CI.mean.0.95 1.27915980 1.58086166
var 12.58770161 19.22580645
std.dev 3.54791511 4.38472422
coef.var 0.38748561 0.38128037
skewness 0.07694431 0.72064177
skew.2SE 0.09282537 0.86937990
kurtosis -0.15977594 -0.17286102
kurt.2SE -0.09870373 -0.10678722
normtest.W 0.96119718 0.91376919
normtest.p 0.29609977 0.01413934
Output 0.11

Next, we can run the Wilcoxon signed-rank test. We can again use the wilcox.test() function,

but this time because our data are stored in different columns (message and nomessag) we
need to enter the names of the two variables we want to compare rather than a formula, and
we need to include the option paired=TRUE to tell R that the data are paired. (If we don’t
include this option R will do a Wilcoxon rank-sum test.) For these examples, we’re also going
to include the option correct = FALSE, because we do not want a continuity correction.
Therefore, to run the analysis execute:

darkModel<-wilcox.test(darkLord$message, darkLord$nomessag, paired = TRUE,
correct= FALSE)

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 16

We can see the output by executing the model name:
darkModel

Wilcoxon signed rank test

data: darkLord$message and darkLord$nomessag
V = 111.5, p-value = 0.03627
alternative hypothesis: true location shift is not equal to 0
Output 0.12

Finally, we can calculate the effect size. If you have executed the function from the book
chapter, you can get the effect sizes by inputting the model name and the number of
observations into the function:

rFromWilcox(darkModel, 64)

darkLord$message and darkLord$nomessag Effect Size, r = -0.2617321
Output 0.13

This represents a medium effect (it is close to Cohen’s benchmark of .3), which tells us that
the effect of whether or a subliminal message was present was a substantive effect.

Writing and interpreting the result

 The number of goats sacrificed after hearing the message (Mdn = 9) was
significantly less than after hearing the normal version of the song (Mdn = 11), p <
.05, r = −.26.

Task 3

 A psychologist was interested in the effects of television programmes on domestic
life. She hypothesized that through ‘learning by watching’, certain programmes might
actually encourage people to behave like the characters within them. This in turn
could affect the viewer’s own relationships (depending on whether the programme
depicted harmonious or dysfunctional relationships). She took episodes of three
popular TV shows and showed them to 54 couples, after which the couple were left
alone in the room for an hour. The experimenter measured the number of times the
couple argued. Each couple viewed all three of the TV programmes at different points
in time (a week apart) and the order in which the programmes were viewed was
counterbalanced over couples. The TV programmes selected were EastEnders
(which typically portrays the lives of extremely miserable, argumentative, London folk
who like nothing more than to beat each other up, lie to each other, sleep with each
other’s wives and generally show no evidence of any consideration to their fellow
humans!), Friends (which portrays a group of unrealistically considerate and nice
people who love each other oh so very much – but for some reason I love it anyway!),
and a National Geographic programme about whales (this was supposed to act as a
control). The data are in the file Eastenders.dat. Access the file and conduct
Friedman’s ANOVA on the data.

Load in the data:
eastendersData<-read.delim("Eastenders.dat", header = TRUE)

stat.desc(eastendersData, basic = FALSE, norm = TRUE)

 eastend friends whales
median 8.0000000000 6.00000000 7.00000000
mean 8.0370370370 5.64814815 6.01851852
SE.mean 0.3506637043 0.42226421 0.51224744
CI.mean.0.95 0.7033423206 0.84695475 1.02743826
var 6.6401118099 9.62858141 14.16946191
std.dev 2.5768414406 3.10299555 3.76423457
coef.var 0.3206208244 0.54938282 0.62544205
skewness 0.7780513090 -0.26031167 -0.13704621
skew.2SE 1.1986385649 -0.40102702 -0.21112858
kurtosis 0.0452954476 -1.14673646 -0.98347696

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 17

kurt.2SE 0.0354483792 -0.89744005 -0.76967259
normtest.W 0.9139935672 0.94256841 0.94299775
normtest.p 0.0008919632 0.01194442 0.01245366
Output 0.14

To run the Friedman test we simply input the name of our dataframe, but within the
as.matrix() function, which converts it to a matrix. In this example, we would execute:

friedman.test(as.matrix(eastendersData))

Friedman rank sum test

data: as.matrix(eastendersData)
Friedman chi-squared = 7.5859, df = 2, p-value = 0.02253
Output 0.15

The output shows the chi-square test statistic and its associated degrees of freedom (in this
case we had three groups so the degrees of freedom are 3 – 1 = 2), and the significance.
Therefore, we could conclude that the type of programme watched significantly affected the
subsequent number of arguments (because the significance value is less than .05). However,
this result doesn’t tell us exactly where the differences lie.

As with the Kruskal–Wallis test, there is a function that enables us to compare all groups, or
to compare groups to a baseline. This function, friedmanmc(), requires the data to be in
exactly the same format as the friedman.test() function and we use it in exactly the same way.
Therefore, for the current data we would execute:

friedmanmc(as.matrix(eastendersData))

The results are pasted below. As with the Kruskal–Wallis test, you need to look at the column
labelled differences: if this says TRUE then the groups differ significantly, but if it says FALSE
they don’t.

Multiple comparisons between groups after Friedman test
p.value: 0.05
Comparisons
 obs.dif critical.dif difference
1-2 26.0 24.87897 TRUE
1-3 20.5 24.87897 FALSE
2-3 5.5 24.87897 FALSE
Output 0.16

Writing and interpreting the result
For Friedman’s ANOVA we need only report the test statistic (which we saw earlier is denoted
by χ2), its degrees of freedom and its significance. So, we could report something like:

 The number of arguments that couples had was significantly affected by the
programme they had just watched, χ2(2) = 7.59, p < .05.

We need to report the follow-up tests as well:
 The number of arguments that couples had was significantly affected by the

programme they had just watched, χ2(2) = 7.59, p < .05. Post hoc tests were used
with Bonferroni correction applied. It appeared that watching EastEnders significantly
affected the number of arguments compared to Friends (difference = 26.0). However,
the number of arguments was not significantly different after watching EastEnders
compared to the programme about whales (difference = 20.5), or after watching
Friends compared to the programme about whales (difference = 5.5). In all cases, the
critical difference (α = .05 corrected for the number of tests) was 24.88. We can
conclude that EastEnders produced significantly more arguments compared to
Friends. However, Friends didn’t produce any substantial reduction in the number of
arguments relative to the whale programme.

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 18

Task 4

 A researcher was interested in trying to prevent coulrophobia (fear of clowns) in
children. She decided to do an experiment in which different groups of children (15 in
each) were exposed to different forms of positive information about clowns. The first
group watched some adverts for McDonald’s in which their mascot Ronald McDonald
is seen cavorting about with children going on about how they should love their
mums. A second group was told a story about a clown who helped some children
when they got lost in a forest (although what on earth a clown was doing in a forest
remains a mystery). A third group was entertained by a real clown, who came into the
classroom and made balloon animals for the children. A final group acted as a control
condition and they had nothing done to them at all. The researcher took self-report
ratings of how much the children liked clowns, resulting in a score for each child that
could range from 0 (not scared of clowns at all) to 5 (very scared of clowns). The data
are in the file coulrophobia.dat. Access them and conduct a Kruskal–Wallis test.

Load in the data:
clownData<-read.delim("coulrophobia.dat", header = TRUE)

The variable infotype, which contains text, will be imported as a factor. This is fine except
that when we import the data the order of the groups will be alphabetic: Advert, Exposure,
None, Story. For reasons that will become apparent, it’s useful to have None as our control
category. Therefore, we need to reorder the factor levels. We can do this by executing:

clownData$infotype<-factor(clownData$infotype, levels =
levels(clownData$infotype)[c(3, 1, 2, 4)])

This command uses the factor() function to reorder the levels of the infotype variable. It re-
creates the variable infotype in the clownData dataframe (clownData$infotype) based on
itself, but then uses the levels() function to reorder the groups. We simply put the order of the
levels that we’d like in the c() function, so in this case we have asked for the levels to be
ordered 3, 1, 2, 4, which means that the current third group (None) will become the first
group, the current first group will become the second group and so on. Having executed this
command, our groups will be ordered None, Advert, Exposure, Story.

We can look at some descriptive statistics by executing:
by(clownData$beliefs, clownData$infotype, stat.desc, basic=FALSE)

clownData$infotype: None
 median mean SE.mean CI.mean.0.95 var std.dev coef.var
 2.0000000 2.3333333 0.1259882 0.2702177 0.2380952 0.4879500 0.2091214
--
clownData$infotype: Advert
 median mean SE.mean CI.mean.0.95 var std.dev coef.var
 4.0000000 3.6000000 0.3055050 0.6552432 1.4000000 1.1832160 0.3286711
--
clownData$infotype: Exposure
 median mean SE.mean CI.mean.0.95 var std.dev coef.var
 1.0000000 1.8666667 0.4349786 0.9329362 2.8380952 1.6846647 0.9024990
--
clownData$infotype: Story
 median mean SE.mean CI.mean.0.95 var std.dev coef.var
 1.0000000 1.6666667 0.3607752 0.7737858 1.9523810 1.3972763 0.8383658
Output 0.17

The Kruskal–Wallis test is done using the kruskal.test() function. For the current data we

would execute:
kruskal.test(beliefs ~ infotype, data = clownData)

To interpret the Kruskal–Wallis test, it is useful to obtain the mean rank for each group. We
can do this by adding a variable called Ranks to the dataframe with the rank() function:

clownData$Ranks<-rank(clownData$beliefs)

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 19

This command creates a variable Ranks in the clownData dataframe that is the ranks for the
variable beliefs. We can then obtain the mean rank for each group using the by() function in
conjunction with the mean() function:

by(clownData$Ranks, clownData$infotype, mean)

Let’s have a look at the output from the Kruskal–Wallis test:

Kruskal-Wallis rank sum test

data: beliefs by infotype
Kruskal-Wallis chi-squared = 17.0581, df = 3, p-value = 0.0006876
Output 0.18

This shows this test statistic (R labels it chi-squared rather than H) and its associated degrees
of freedom (in this case we had four groups so the degrees of freedom are 3), and the
significance (which is less than the critical value of .05). Therefore, we could conclude that
the type of information presented to the children about clowns significantly affected their fear
ratings of clowns.

clownData$infotype: None
[1] 31.33333
--
clownData$infotype: Advert
[1] 45.03333
--
clownData$infotype: Exposure
[1] 23.76667
--
clownData$infotype: Story
[1] 21.86667
Output 0.19

Output 0.19 tells us the mean rank in each condition. These mean ranks are important later
for interpreting any effects.

A nice succinct set of comparisons would be to compare each group against the control:

• Test 1: Advert compared to control
• Test 2: Exposure compared to control
• Test 3: Story compared to control

Fortunately, we can implement this analysis using the kruskalmc() function by using the cont
option. This option takes the form of cont = ‘one-tailed’ or ‘two-tailed’ and, if included, will
compare all levels against the first. Therefore, the only complication is that we need to make
sure that the None group is the first level of the infotype factor. Fortunately we thought ahead
and made the None group the first level when we loaded the data into R. Therefore, to
compare each group to the None group (using a two-tailed test) we simply execute:

kruskalmc(beliefs ~ infotype, data = clownData, cont = 'two-tailed')

Multiple comparison test after Kruskal-Wallis, treatments vs control (two-tailed)
p.value: 0.05
Comparisons
 obs.dif critical.dif difference
None-Advert 13.700000 15.26651 FALSE
None-Exposure 7.566667 15.26651 FALSE
None-Story 9.466667 15.26651 FALSE
Output 0.20

Looking at the output above, the significant effect of type of information on fear ratings of
clowns does not seem to reflect the difference between the control and experimental groups.

If we look at the means in the output from the descriptives above, we can see the
highest mean fear belief was for the Advert condition, therefore it is possible that the
significant effect of type of information on fear ratings of clowns is due to the differences
between the Advert group and the other groups. To compare all levels against the Advert

DISCOVERING STATISTICS USING R

PROFESSOR ANDY P FIELD 20

level, we first need to re-order the data so that Advert is now the first level. To do this we can
type:

clownData$infotype<-factor(clownData$infotype, levels =
levels(clownData$infotype)[c(2, 1, 3, 4)])

To compare each group against Advert, we then type:

kruskalmc(beliefs ~ infotype, data = clownData, cont = 'two-tailed')

Multiple comparison test after Kruskal-Wallis, treatments vs control (two-tailed)
p.value: 0.05
Comparisons
 obs.dif critical.dif difference
Advert-None 13.70000 15.26651 FALSE
Advert-Exposure 21.26667 15.26651 TRUE
Advert-Story 23.16667 15.26651 TRUE
Output 0.21

Looking at Output Output 0.21 we can see that hearing a positive story and having exposure
to a clown significantly decreased fear beliefs compared to watching the advert (I know the
direction of the effects by looking at Output 0.19), but there was no significant difference in
fear levels between watching the advert and the control condition.

Writing and interpreting the result
For the Kruskal–Wallis test, we need only report the test statistic (denoted by H), its degrees
of freedom and its significance. So, we could report something like:

 Children’s fear beliefs about clowns were significantly affected the format of
information given to them, H(3) = 17.06, p < .01).

However, we need to report the follow-up tests as well (including their effect sizes):
 Children’s fear beliefs about clowns were significantly affected by the format of

information given to them, H(3) = 17.06, p < .01. Focused comparisons of the mean
ranks between groups showed that fear belief counts were significantly lower after
exposure (difference = 21.3) and stories (difference = 23.17), but not the control
(difference = 13.7) compared to watching adverts featuring Ronald McDonald. A
second set of comparisons revealed that compared to the control condition, fear
belief scores were not significantly different after adverts (difference = 13.7), stories
(difference = 9.47) or exposure (difference = 7.57). In all cases, the critical difference
(α = .05 corrected for the number of tests) was 15.27.

